Antidirected paths in 5-chromatic digraphs

Amine El Sahili

Abstract. Let T_5 be the regular 5-tournament. B. Grünbaum proved that T_5 is the only 5-tournament which contains no copy of the antidirected path P_4. In this paper, we prove that except for T_5, any connected 5-chromatic oriented digraph in which each vertex has out-degree at least two contains a copy of P_4. It will be shown, by an example, that the condition that each vertex have out-degree at least two is indispensable.

1. Introduction

The digraphs considered here have no loops or multiple edges. An oriented graph is a digraph in which, for every two vertices x and y, at most one of (x, y), (y, x) is an edge. The digraphs used in this paper are all oriented graphs. By $G(D)$ we denote the underlying graph of a digraph D. The chromatic number of a digraph is the chromatic number of its underlying graph. A graph G is k-critical if $\chi(G) = k$ and $\chi(G - v) = k - 1$ for any vertex v in $V(G)$.

A block of an oriented path is a maximal directed subpath. We recall that the length of a path is the number of its edges. The antidirected path is an oriented path in which each block is of length 1. P_n denotes the antidirected path of length n, beginning by a backward edge.

The problem of determining which oriented paths lie in a given n-chromatic digraph D is a well-known problem. When D is an n-tournament, the problem has been completely resolved (Havet and Thomassé [6]). However, the case of an arbitrary n-chromatic digraph is still an open question. We know only that an n-chromatic digraph contains a directed path of length $n - 1$ (Roy [7], Gallai [4]), and a path of length $n - 1$ formed by two blocks, one of which has length 1 [2]. In this paper, we will be interested in the antidirected paths. In order to generalize the results found on tournaments to arbitrary digraphs, and as a first step in this direction, we generalize to 5-chromatic digraphs a particular result of Grünbaum on 5-tournaments: any 5-tournament except for the regular tournament T_5 contains a copy of P_4.

2. The main result

Theorem 1. Let D be a 5-chromatic connected digraph, distinct from T_5, in which each vertex has out-degree at least two. Then D contains a copy of P_4.

To prove this theorem, we need several lemmas.
Lemma 1 (Grünbaum [5]). Except for T_5, any 5-tournament contains a copy of P_4.

Corollary 1. Let D be as in the above theorem. If D contains T_5, then D contains a copy of P_4.

Proof. We first observe that:
1) each vertex of T_5 in an end of a copy of P_2 and a copy of P_3;
2) for any two vertices of T_5, there is a copy of P_2 in T_5 having one of these vertices as an end and not containing the other.

Since D is different from T_5, there exists an edge xy in $G(D)$ such that $x \notin V(T_5)$ and $y \in V(T_5)$. If $(x, y) \in E(D)$ it forms together with a path P_4 in T_5 having y as an end, a path P_4. Otherwise, since $d^+(x) \geq 2$, there is a vertex x' of D distinct from y such that $x \rightarrow x'$. We choose a path P_2 in T_5 having either y or x' as an end and not containing the other; such a path exists by (1) and (2). Together with the path yxx', it forms a copy of P_4. \hfill \Box

In the sequel, D will denote an oriented digraph as described in theorem 1; by the above corollary we may assume that D contains no 5-tournament as a subdigraph. Moreover, we suppose to the contrary that D contains no copy of P_4. Let D' be a 5-critical subdigraph of D and let D^o be the subdigraph of D' induced by the vertices of out-degree at least three in D'.

Let G be a graph which contains no K_{2n+1}, where $n \geq 2$. Suppose that we can orient G in such a way that each vertex has in-degree at most n. It is shown in [?] that $\chi(G) \leq 2n$. We have then the following lemma

Lemma 2. D^o is not empty.

Proof. Otherwise, we have $d^+_D(x) \leq 2$ for every x in D'. Since D' contains no 5-tournament, $\chi(D') \leq 4$, a contradiction. \hfill \Box

Lemma 3. Let v be a vertex of D and let x, y be two vertices in $N^-(v)$. If $x \in V(D')$, then $y \notin V(D')$.

Proof. Suppose that $y \in V(D')$. The set $(N^+(x) \cup N^+(y)) \setminus \{v, x, y\}$ contains two distinct vertices x' and y' such that $x \rightarrow x', y \rightarrow y'$; the path $x'xvyy'$ is a copy of P_4, a contradiction. \hfill \Box

Corollary 2. For every vertex v in D^o, $d^-_{D^o}(v) \leq 1$.

Lemma 4. Let H be a connected digraph in which each vertex has in-degree at most one. Then H contains at most one cycle.

Lemma 5. Let v be a vertex of D such that $d^+(v) \geq 3$ and let x, y and z be three distinct vertices in $N^+(v)$. Suppose that $x \rightarrow y$. Then:
1) $x \rightarrow z$.
2) $yz \notin E(G(D))$.
3) $N^-(y) = N^-(z) = \{v, x\}$.

Proof. 1) Since $d^+(x) \geq 2$, there is a vertex x' in D distinct from y such that $x \rightarrow x'$. Then $x' = z$, since otherwise the path $x'xyyz$ is a copy of P_4.
2) Suppose that $y \rightarrow z$. We have, by (1), $y \rightarrow x$; but $x \rightarrow y$, a contradiction. We use the same argument if $z \rightarrow y$.
3) Let $H = D[v, x, y, z]$. We first remark that if $u \in \{y, z\}$ and u' is any vertex
of D distinct from u, there exists a path P_2 in H having u as an end and not containing u'. Suppose, to the contrary, that $N^-(u) \setminus \{v, x\}$ is not empty, where $u \in \{v, z\}$. Let $w \in N^-(u) \setminus \{v, x\}$ and let u' be a vertex of D distinct from u such that $w \rightarrow u'$. By the above remark, there exists a path P_2 in H having u as an end and containing no u'. A copy of P_4 is then formed by the path $u'wu$ and P_2, a contradiction.

\[\square\]

Corollary 3. Let x and y be two adjacent vertices of D. Suppose that there exist two vertices v and v' of D such that $\{x, y\} \subseteq N^+(v) \cap N^-(v')$. Then $N^+(v) = \{x, y\}$.

Proof. Suppose that $\{x, y\} \subset N^+(v)$ and let $z \in N^+(v) \setminus \{x, y\}$; we may suppose that $x \rightarrow y$, then we have, by the above lemma, $x \rightarrow z$ and $yz \notin E(G(D))$, so $\{y, z, v'\} \subseteq N^+(x)$. Since $y \rightarrow v'$ we have $y \rightarrow z$, a contradiction.

\[\square\]

Lemma 6. D' is an independent set of D.

Claim 1. Any connected component L of D' contains a vertex v such that $N^+(v) \cap (V(D') \setminus V(D'))$ has at least two vertices.

Proof. If L is a cycle, then each vertex of L satisfies the claim; otherwise L contains a vertex v of out-degree zero in D', and so $N^+(v) \subseteq V(D') \setminus V(D')$.

\[\square\]

Proof of lemma 6: Suppose to the contrary that D' is not an independent set, then there is a connected component L of D' containing at least two vertices. We can choose a vertex v in L satisfying the claim such that $d_L^-(v) = 1$. Let v' be a vertex in L such that $v' \rightarrow v$ and let v_1, v_2 and v_3 be three vertices in $N_{D'}^+(v)$ such that $\{v_1, v_2\} \subseteq V(D') \setminus V(D')$. The digraph D' is 5-critical, so any vertex has degree at least 4 in D'. Since for any $i \in \{1, 2\}$, $d_{D'}^-(v_i) \leq 2$, we have $d_{D'}^-(v_i) \geq 2$. Therefore, there is a vertex u of D' and $j \in \{1, 2\}$ such that $u \notin \{v, v_1, v_2\}$ and $u \rightarrow v_j$; we have either $u \notin \{v, v_1, v_2, v_3\}$ or $u = v_3$. In the latter case $v_3 \notin V(D')$ by lemma 3. We have $d_{D'}(v_3) \geq 2$, so there is a vertex w of D' such that $w \notin \{v, v_1, v_2, v_3\}$ and $w \rightarrow v_3$, thus we may assert that there exists a vertex u of D' and $j \in \{1, 2, 3\}$ such that $u \notin \{v, v_1, v_2, v_3\}$, $v_j \notin D'$ and $u \rightarrow v_j$. Let u' be a vertex of D distinct from v_j such that $u \rightarrow u'$. If $u' \neq v$, the path $u'v_jv_k$ is a copy of P_4, where $h \in \{1, 2, 3\} \setminus \{j\}$ is chosen such that $u' \neq v_h$, a contradiction. Otherwise let w be a vertex in $N^+(v_j) \setminus \{v, v_j, u\}$. Such a vertex exists since $d^+(v_j) \geq 3$ and $v_j \notin N^+(v')$ by lemma 3. The path $v_jvu'w$ is a copy of P_4, a contradiction.

\[\square\]

Corollary 4. Let v be a vertex in D'. Then
1) there exist two vertices x, y in $N_{D'}^+(v)$ such that $x \rightarrow y$;
2) $d_{D'}^+(v) = 3$.

Proof. 1) If (1) does not hold, let v_1, v_2 and v_3 be three vertices in $N_{D'}^+(v)$. For each $i \in \{1, 2, 3\}$, there is a vertex u_i in D' such that $u_i \notin \{v, v_1, v_2, v_3\}$ and $u_i \rightarrow v_i$; the case $u_1 = u_2 = u_3$ does not occur by lemma 3. Suppose that $u_1 \neq u_2$. Then $u_1 \rightarrow v$, $i = 1, 2$, since otherwise D' contains a path P_4. But now the path $v_1u_1v_2v_3$ is a copy of P_4.

2) Suppose, to the contrary, that $d_{D'}^+(v) \geq 4$ and let x, y be two vertices in $N_{D'}^+(v)$ such that $x \rightarrow y$. By lemma 5, $x \rightarrow z$ for every $z \notin x$ in $N_{D'}^+(v)$. \[\square\]
Thus $d^+_{D^o}(v) \geq 3$ and so x, v belong to the same connected component of D^o, a contradiction.

In the sequel, we will need the following theorem proved by Gallai [3].

Theorem 2. Let G be a k-critical graph, where k is a positive integer. Let G_m be the subgraph of G induced by the vertices of degree $k-1$. Then each block of G_m is either complete or a chordless odd cycle.

D_4 will denote the subdigraph of D' induced by the vertices of degree 4.

Lemma 7. Any vertex of D' has in-degree (in D') at least 2.

Proof. It is clear that any vertex in $V(D') \setminus V(D^o)$ has in-degree at least 2 in D'. Let $v \in V(D^o)$ and $N^+_D(v) = \{x, y, z\}$ where $x \rightarrow y$ and $x \rightarrow z$. By lemma 5, we have $yz \notin E(G(D))$ and $N^-(y) = N^-(z) = \{v, x\}$, so $d_D(y) = d_D(z) = 4$. For every u in D' we have $u \rightarrow v$ whenever $u \rightarrow x$, since otherwise we have a path P_4 in D; consequently, if $d_{D'}(v) = 1$ then $d_{D'}(x) = 2$ and so $d_{D'}(v) = d_{D'}(x) = 4$. Therefore x, y, z and v are in the same block of D_m, so $D'[v, x, y, z]$ is complete, which is a contradiction since $yz \notin E(G(D))$. □

We now associate to each vertex v in D^o the set $S(v) = \{t(v), t'(v), v_0, ..., v_g(v), v_{g(v)+1}\}$, $0 \leq g(v) \leq 5$, defined as follows (see Figure 1)

\[\{v_0, t(v), t'(v)\} = N^+_D(v) \] where $v_0 \rightarrow t(v)$ and $v_0 \rightarrow t'(v)$, $v_1 = v$. Set $T(v) = \{t(v), t'(v)\}$. If $d_{D'}(v_0) \geq 3$, put $g(v) = 0$; if not, let v_2 be the unique vertex of D' distinct from v_1 such that $v_2 \rightarrow v_0$. We have $v_2 \rightarrow v_1$. Again, if $d_{D'}(v_1) \geq 3$, put $g(v) = 1$; otherwise, let v_3 be the unique vertex of D' distinct from v_2 such that $v_3 \rightarrow v_1$; such a vertex exists by lemma 7. We have $v_2 \rightarrow v_1$, since otherwise we have either a path P_4 in D or $d_{D'}(v_0) \geq 3$. We may continue this process until meeting the first vertex of in-degree at least three in D'; call this vertex $v_{g(v)}$, where $g(v)$ is the number of iterations required. Such a vertex exists and $g(v) \leq 5$.

In fact, suppose that $v_1, ..., v_5$ are defined as above and $d_{D'}(v_1) = 2$, $i = 1, ..., 4$. By corollary 3, we have $d_{D'}(v_i) = 2$, $i = 2, ..., 5$. If $d_{D'}(v_5) = 2$ the vertices $v_2, ..., v_5$ will be in the same block of D_4. By theorem 2, $D'[v_2, ..., v_5]$ is complete, which is a contradiction since $v_2v_5 \notin E(G(D))$.

Set $O(v) = \{z \in D' : z \neq v_{g(v)+1} \text{ and } z \rightarrow v_{g(v)}\}$; we have $z \rightarrow v_{g(v)+1}$ for every z in $O(v)$.

Lemma 8. Let u and v be two distinct vertices of D^o. We have:
\(S(u) \cap S(v) = \phi. \)

Proof. We first remark that \(N^+_D(x) \subseteq S(v) \cup O(v) \) for all \(x \) in \(S(v) \) and \(N^-_D(x) \subseteq S(v) \) for all \(x \) in \((S(v) \cup O(v))\setminus\{v\}\). By lemma 5 and corollary 3 we have \(d^+_D(x) = 2 \) for all \(x \) in \((S(v) \cup O(v))\setminus\{v\}\), so \(u \notin S(v) \cup O(v) \). Let \(x \) be in \(N^+_D(x) \). If \(x \in S(v) \), then \(N^-_D(x) \subseteq S(v) \cup O(v) \), but \(u \in N^-_D(u_0) \), a contradiction. Moreover \(u_0 \notin O(v) \) since otherwise \(T(u) = N^+_D(u_0) \subseteq S(v) \). The same argument proves that \(\{t(v), t'(v), v_0, v\} \cap S(u) = \phi \).

Suppose that \(u_i \notin S(v) \cup O(v) \) for some \(i \), \(0 \leq i \leq g(u) \); if \(u_{i+1} \in S(v) \cup O(v) \), then \(u_{i+1} \in S(v) \cup O(v) \), so \(u_{i+1} \in S(v) \cup O(v) \setminus \{v, v_0, t(v), t'(v)\} \). Thus \(N^+_D(u_{i+1}) \subseteq S(v) \); but \(u_i \in N^+_D(u_{i+1}) \), a contradiction.

Lemma 9. Set \(L = \{v_{g(v)} : v \in D^o\} \). We have:

(i) \(d^-_D(x) = 3 \) for any \(x \) in \(L \).

(ii) \(d^-_D(x) = 2 \) otherwise.

Proof. Let \(s \) and \(p \) be the numbers of vertices in \(D^o \) and \(D' \) respectively. We have:

\[
e(D') = \sum_{v \in V(D')} d^-_D(v) = \sum_{v \in L} d^-_D(v) + \sum_{x \in V(D') \setminus L} d^-_D(v)
\]

By lemmas 7 and 8:

\[(2.1) \quad e(D') \geq 3s + 2(p - s). \]

On the other hand:

\[
e(D') = \sum_{v \in V(D')} d^+_D(v) = \sum_{v \in V(D')} d^+_D(v) + \sum_{v \in V(D') \setminus V(D^o)} d^+_D(v)
\]

so

\[(2.2) \quad e(D') \leq 3s + 2(p - s). \]

If (i) or (ii) does not hold the inequality (2.1) will be strict, which contradicts inequality (2.2).

Corollary 5. For any vertex \(v \) in \(D' \), \(O(v) \) contains exactly two vertices.

Proof of Theorem 1. Define the sets:

\[
S = \{v \in V(D') : S(v)\}, \quad O = \{v \in V(D') : O(v)\}, \quad T = \{v \in V(D') : T(v)\}.
\]

We have \(|O| \leq |T| \). If \(O = T \), then \(N^+_D(v) \subseteq S \) for every \(v \) in \(S \). Since \(D' \) is critical, it must be connected and so \(D' = D'[S] \). We define a colouring \(c \) of \(D' \) as follows: Let \(v \) be a vertex in \(D^o \) Put \(c(t(v)) = c(t'(v)) = 1, c(v_0) = 2, c(v_1) = 3. \) If \(g(v) = 1 \), put \(c(v_2) = 4. \) If \(g(v) > 1 \), the colours 1, 2 and 3 suffice to colour \(S(v) \setminus \{v_{g(v)}, v_{g(v)+1}\} \). Put \(c(v_{g(v)}) = 4 \) and \(c(v_{g(v)+1}) = i \) where \(i \in \{2, 3\} \) is chosen such that \(i \neq c(v_{g(v)-1}) \). It is clear that \(c \) is a proper 4-colour of the 5-chromatic digraph \(D' \), a contradiction.

If \(O \neq T \) then, since \(|O| \leq |T| \), there is a vertex \(v \) in \(D^o \) such that either \(t(v) \notin O \) or \(t'(v) \notin O \). Suppose, without loss of generality, that \(t(v) \notin O \). Then \(N^+_D(t(v)) \cap S = \phi \). Let \(N^+_D(t(v)) = \{u, u'\} \). We have \(\{u, u'\} \cap (D^o \cup L) = \phi \), so \(d^-_D(u) = d^-_D(u') = d^-_D(v) = 2 \) and \(d^+_D(u) = d^+_D(u') = 4 \). On the other hand, there exists a vertex \(w \) in \(D' \) such that \(w \notin \{u, u'\} \) and \(N^+_D(w) \cap \{u, u'\} = \phi. \)
We have $N^+_D(w) = \{u, u'\}$ since D' contains no path P_4 and $w t(v)$ cannot be an edge of $G(D')$; thus $d_{D'}(w) = 4$.

Since $d_{D'}(t(v)) = 4$, the vertices $t(v), u, u'$ and w are in a block of D_4 which is neither complete nor a chordless odd cycle, a contradiction. Theorem 2. This completes the proof of theorem 1.

An example which shows that the condition that each vertex has out-degree at least two in theorem 1 is indispensable can be constructed from the 5-tournament T_5 with an edge (x, y) such that $x \notin V(T_5)$ and $y \in V(T_5)$.

If H contains a path P_4, x cannot be an interior vertex of P_4 since $d(x) = 1$; furthermore it cannot be an end of P_4 since $d^-(x) = 0$. Thus $P_4 \subseteq T_5$ which contradicts lemma 1.

We conclude this paper by asking the following question:

Does there exist a 5-chromatic oriented graph which contains neither a 5-tournament nor P_4?
References

Lebanese University-Sciences faculty-section 1-Beyrouth-Lebanon, Adess line 2
E-mail address: aminsahi@inco.com.lb